The Top Ten Vitamin Myths of 2013
The Top Ten Vitamin Myths of 2013
- All multivitamins are exactly the same, so a study on any one product is applicable to all other multis (ignoring variations of number of nutrients, the dose and form of each one, any supporting substances, the delivery form and excipients is good science)
- People take multivitamins primarily to prevent/treat cancer and heart disease (therefore any lack of definitive proof of efficacy against these diseases means that people should immediately stop taking vitamins, and all research on multivitamins is futile and should be halted even though they still are proven to prevent deficiency diseases and supply nutrients needed to preserve joint health, eyesight, healthy cholesterol and blood lipids, reduce cardiovascular risk factors, prevent birth defects, etc.)
- Our food supply is perfect and unchanging, as are our eating habits, making multivitamins unnecessary (Although USDA food tables were drafted around 1940, it’s okay to ignore changes in soil, seed, agriculture, food processing, how much processed and fast food we consume, the detoxification burden of environmental contaminants, and our lifestyles when telling Americans that they don’t need to supplement their diets to ensure adequate basic nutrition)
- Definitive answers of nutrient safety/efficacy can be found by “data mining” older studies (the practice of another team applying a “secondary data analysis” to certain fields within previously published studies in which nutrient values were reported but were not the intended research subject (“lacking depth”), and therefore all relevant variables for the nutrient(s) were probably not identified nor properly controlled as they should be in primary research)
- Perfect classic control groups can exist in nutrient research (obviously, this would require subjects who don’t ingest any vitamins or minerals from food or supplements (or sunlight for vitamin D), had their serum levels at the beginning of the study measured and equalized, and had identified/controlled all co-factors that influence those nutrient levels in the body)
- Editorials in medical journals accurately and impartially reflect the true state of science regarding nutrient research (by honestly addressing shortcomings and limitations of the reports instead of adding their spin to well-publicized controversial articles appearing in their journal)
- Media coverage of vitamin controversies is always balanced and put into proper perspective (utilizing reporters and editors who know the topic, really research stories, and present comprehensive reports)
- Researchers who make political statements in their reports should still be regarded as unbiased experts in nutrient study design and execution (for example, when they inaccurately state that dietary supplements are “unregulated” simply because they are not regulated as drugs it raises questions of impartiality, as well as exposing basic ignorance of the topic they claim to be experts on)
- A single study, especially if blending data from several other studies, can be regarded as Definitive (especially data-mining secondary data analyses that look for possible associations but lack the depth of original design to control all variables)
- A single study can reasonably claim to contradict decades of rigorous research (especially when it is a preliminary study not designed to screen all relevant factors that would allow it to demonstrate cause-and-effect and dose-dependent relationships)
None of these statements are true, in my opinion, but in my experience still appear to be typical operating procedures in the brave new world of research and reporting that we live in today. Questionable studies may have been designed based on questionable models, often due to ignorance or unconscious bias - even if well-intentioned.
Peer reviewers for medical journals may have their own biases, ignorance, or motives for allowing statistically significant reports based on fundamentally flawed designs to be published, or for not questioning some studies' conclusions for poorly matching the reported data.
For example, I have actually seen supplement studies reporting a conclusion that the supplements weren't effective even when the subgroup that actually followed protocol and took the supplements had success. If the overall failure of the supplements in the study were actually attributable to non-compliance subjects, that shouldn't be interpreted as the supplements being ineffective, failing the test.
Some controversial studies are heavily marketed, even enlisting reporters to write stories based partially on sound bites and press releases in advance of embargoed reports' publication dates. Authors of controversial studies may become celebrity "experts" in the field, with their famous work widely cited by succeeding authors and being sought for media interviews during future controversies. Often, expert criticism of their work - and even failure to replicate the results in subsequent reports, a hallmark of the Scientific Method self-correcting the scientific record - typically is ignored; perhaps in light of their celebrity status.
Peer reviewers for medical journals may have their own biases, ignorance, or motives for allowing statistically significant reports based on fundamentally flawed designs to be published, or for not questioning some studies' conclusions for poorly matching the reported data.
For example, I have actually seen supplement studies reporting a conclusion that the supplements weren't effective even when the subgroup that actually followed protocol and took the supplements had success. If the overall failure of the supplements in the study were actually attributable to non-compliance subjects, that shouldn't be interpreted as the supplements being ineffective, failing the test.
Some controversial studies are heavily marketed, even enlisting reporters to write stories based partially on sound bites and press releases in advance of embargoed reports' publication dates. Authors of controversial studies may become celebrity "experts" in the field, with their famous work widely cited by succeeding authors and being sought for media interviews during future controversies. Often, expert criticism of their work - and even failure to replicate the results in subsequent reports, a hallmark of the Scientific Method self-correcting the scientific record - typically is ignored; perhaps in light of their celebrity status.
©2013 by Neil E. Levin, CCN, DANLA www.honestnutrition.com; may be cited with full attribution
1 comment:
Healthy patients mean lower profits for drug companies, doctors and hospitals. So, they don't have any incentive to recommend supplements. In fact, it is more profitable for them to discourage the use of supplements, and to claim they are worthless. As usual, follow the money trail, to see how the vitamin and supplement bashers will profit from the claims of no benefits. Fortunately, my doctor cares about patients, and does recommend vitamins, minerals and other beneficial supplements.
Post a Comment